
ORIGINAL PAPER

Electronic structure theory based study of proline interacting
with gold nano clusters

Sandhya Rai & Harjinder Singh

Received: 15 October 2012 /Accepted: 26 November 2012 /Published online: 21 December 2012
# Springer-Verlag Berlin Heidelberg 2012

Abstract Interaction between metal nanoparticles and bio-
molecules is important from the view point of developing
and designing biosensors. Studies on proline tagged with
gold nanoclusters are reported here using density functional
theory (DFT) calculations for its structural, electronic and
bonding properties. Geometries of the complexes are opti-
mized using the PBE1PBE functional and mixed basis set, i.
e., 6-311++G for the amino acid and SDD for the gold
clusters. Equilibrium configurations are analyzed in terms
of interaction energies, molecular orbitals and charge densi-
ty. The complexes associated with cluster composed of an
odd number of Au atoms show higher stability. Marked
decrease in the HOMO-LUMO gaps is observed on com-
plexation. Major components of interaction between the two
moieties are: the anchoring N-Au and O-Au bond; and the
non covalent interactions between Au and N-H or O-H
bonds. The electron affinities and vertical ionization poten-
tials for all complexes are calculated. They show an in-
creased value of electron affinity and ionization potential
on complexation. Natural bond orbital (NBO) analysis
reveals a charge transfer between the donor (proline) and
acceptor (gold cluster). The results indicate that the nature of
interaction between the two moieties is partially covalent.
Our results will be useful for further experimental studies
and may be important for future applications.

Keywords AIM .Electron affinity .Gold cluster . Ionization
potential . NBO . Proline

Introduction

Nano metal clusters are known to have size-dependent elec-
tronic and optical properties, ranging from metal like to
molecule like, such as single-electron charging and quantum
size effects [1]. Hence, they are fundamentally interesting
and in many cases are found to have useful technological
applications [2–4]. Conjugated gold nanoparticles have
attracted much attention in chemistry and material science
because of their property of self-assembly, in developing
potential miniature devices [5–10]. Gold nanoparticles
attract interest also because their optical, catalytic and
electronic properties characteristically depend on the
conjugating particles that form complexes with gold
[11–13]. An added interest in gold nanoclusters is due
to the recent experimental and theoretical discoveries of
large planar gas-phase gold clusters [13, 14]. The oc-
currence of planar metal clusters of this size is unprec-
edented, and their stability is attributed to strong
relativistic bonding effects in gold that reduce the s–d
energy gap, thus inducing hybridization of the atomic
5d–6s levels and causing overlap of the 5d shells of the
neighboring atoms in cluster [13, 15, 16]. Huang et al.
have reported preferential physisorption of Argon on a
2D gold cluster over a 3D cluster of same size [17].

Miniaturization of structures has created a platform for
nano-biomedical research as well [18–20]. Tagging of noble
metal nanoparticles to biomolecules is well investigated
both theoretically as well as experimentally. Yu et al. have
found that oligoDNA-protected silver clusters get covalently
conjugated to proteins and primary antibodies without sig-
nificant interference of either biological function or nano-
cluster photophysics [21]. Upert et al. have shown the size
controlled synthesis of silver nanoparticles using oligopro-
line scaffolds [22]. It has also been shown that low nucle-
arity of silver clusters are highly attractive for application as
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optical probes for biomolecules, due to their low toxicity
and very small size [23, 24]. The tagging of dipeptides with
silver nanoclusters reduces the conformational flexibility of
the dipeptide thereby inducing transitions between second-
ary structures [23]. The nontoxic and biocompatible nature
of gold nanoparticles has put them on the center stage for
designing therapeutic drug delivery vehicles [25]. Pal et al.
have suggested that attachment of AuNP to peptides does
not change the antimicrobial activity too much but the
cytotoxicity of the peptides is decreased significantly [26].
It has been found that interaction between biomolecules and
gold nanoparticles has potential application in the field of
biosensors, biodiagnostics, etc. [27–30]. An example is a
recent study on Tryptophan tagged with a single gold cation
recording a strong absorption band in the visible spectral
region attributed to charge-transfer excitations [31]. The
assembly of proteins on gold surface has a large number
of applications in the field of biotechnology ranging from
protein detection to cancer therapy. It has also been found
that serum proteins become associated with nanoparticles in
biological medium and form a protein ‘corona’, which
defines the identity of the particles within the biological
system thus making the protein-nanoparticle interaction par-
ticularly interesting [32]. Imaging of cells and immunolab-
eling using gold nanoparticles is another area of research,
which is extensively being investigated these days [33].
Nanoparticle interaction with plasma protein is found to
activate the protein and results in inflammatory responses.
Immunoassays based on gold nanoparticle interaction with
antibody conjugates and their antigens have also been de-
veloped recently [34].

Proline is a unique amino acid in the sense that the amine
nitrogen is bound to two alkyl groups instead of one, and
hence is an example of secondary nitrogen group. This
results in conformational rigidity hence providing some
peculiar properties to this amino acid. Proline functions as
a universal antioxidant and is found to provide effective
protection against H2O2 stress [35]. It also functions as an
osmoprotectant [36].

We have employed methods based on the density
functional theory (DFT) to determine the nature of
interaction between proline and nanogold (Aun, where
n ranges from 3 to 13) clusters. Studies are carried out
on L-proline. The interaction has been described in
terms of equilibrium configurations, interaction energies,
and HOMO-LUMO gaps. Natural bond orbital (NBO)
analysis has been performed to quantify the charge
transfer interactions. Atoms-in-molecules (AIM) theory
has been applied to better understand the nature of
bonding between proline and gold clusters. Calculations
of vertical ionization energy and electron affinity have
also been done in order to study the electron transfer in
these systems. Our results can be useful for future

studies based on designing new materials involving
these kinds of interactions.

Computational details

The benchmark study of Zhao and Truhlar [37, 38],
concerning DFT performances on describing nonbonded
interactions says that the B3LYP hybrid density functional,
widely accepted as the standard DFT method, describes the
nonbonded interactions rather poorly, while the PBE1PBE
functional is one of the best methods describing these types
of interactions [39]. Therefore all the structures were opti-
mized using the exchange correlation functional proposed
by Perdew, Burke and Ernzerhof (PBE1PBE) functional
[40–42]. Stuttgart-Dresden 11-electron ECP, designated as
SDD was used for gold [43–46]. These energy-consistent
ECPs work within the relativistic Dirac-Fock theory and
significantly remove the spin contamination. For other
atoms Pople’s 6-311++G split-valence basis set was used
[47–50]. The initial coordinates of gold clusters were gen-
erated using GaussView [51]. These initial structures were
based on earlier data reported by Hakkinen et al. [13], on
bond distances and angles. Based on their proposed geom-
etries, the input structures were made and then further opti-
mized. The initial geometries of the complexes were
generated by placing the gold clusters near the active site
of proline, i.e., amine terminal and the carboxyl terminal.
The harmonic vibrational frequencies and the gradients were
calculated analytically. Real frequencies were obtained for
all the optimized structures. The binding energies reported
are zero-point vibrational energy (ZPVE) corrected. All the
wave functions obtained for the optimized geometries were
checked for stability. The interaction energies (Eint) were
calculated using the following equation:

Eint ¼ Ecomplex;n � Eproline þ EAu;n

� �
; ð1Þ

where Ecomplex, n is the ZPVE corrected electronic energy of
the complex, n refers to number of Au atoms in the cluster and
Eproline and EAu,n are the ZPVE corrected electronic energies
of uncomplexed proline and cluster, respectively. The NBO
analysis [52] was performed on these complexes to examine
all possible stabilizing interactions. Interactions between filled
Lewis and empty non-Lewis orbitals are determined and
energies of second order stabilization, E(2) [53], due to transfer
of electron cloud from donor NBO(i) to acceptor NBO(j) are
obtained using the equation:

Eð2Þ ¼ qi
F i; jð Þð Þ2
Ej � Ei

" #

; ð2Þ

where qi is donor orbital occupancy, Ei and Ej are energies of
the orbitals i, j respectively, and F(i,j) is the off diagonal NBO
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Fock matrix element. AIM analysis was performed with
AIMAll package [54] to calculate the properties of bond
critical points (BCPs). Vertical electron affinity (EAvertical)
and ionization potential (IPvertical) were calculated using
Eqs. 3 and 4, respectively:

EAvertical ¼ Etotal � Eanion ð3Þ

IPvertical ¼ Ecation � Etotal; ð4Þ
where Etotal is the total energy of the complex, Eanion is the
energy when one electron is added to the system and Ecation

is the energy when one electron is removed from the system.
All the calculations are performed using Gaussian 09 suite
of programs, [55], and the molecular orbitals were plotted
using the GaussView program [51].

Results and discussion

Geometry of proline-Aun complexes

The interatomic interactions can be basically of two
types: bonded and non-bonded. The bonded interactions
include ionic, covalent, metallic and partial bond inter-
actions, whereas, the non-bonded interactions include
charge transfer, dipolar, hydrogen bonding and disper-
sion interactions. All the complexes that have been
studied in this article are charge transfer complexes
and there exists no covalent bonding between the donor
and the acceptor. Optimization of clusters showed that
the average Au-Au bond length falls in the range of
2.58–2.90Å (Fig. S1 of supporting information). These
values are in agreement with the previously reported
structures by Häkkinen et al. [13]. Active sites of pro-
line are rich in electrons and will be able to donate the
electron density to the empty 5d and 6s orbitals of gold.
Owing to relativistic effects, gold has a high electron
affinity which explains its high propensity to accept the
electrons [15, 56]. The optimized geometries of proline
tagged with gold nanoclusters, where the size of gold
nanoclusters is varied from 3 to 13 are shown in Fig. 1.

In line with the observations made by earlier groups [57,
58], it is evident from Fig. 1 that there is a monodentate
interaction from the amine terminal, where as the carboxyl
group shows a bidentate type of interaction with the only
exception of complex with Au9 (Fig. 1.7b). The bidentate
interaction in particular, involves the formation of a non
conventional hydrogen bond between the gold cluster and
the hydroxy group (Au⋯OH). Here, the gold cluster is
found to act as a proton acceptor also, an observation
reported in earlier works [57–59]. The geometrical features
of all the optimized species have been shown in Table 1. The

coordinates of the optimized geometries can be found in
supporting information Table S1(a-v). It is evident from
Fig. 1 that the distance between the anchoring bonds falls
in the range of 2.17–2.31 Å for interaction from the amine
terminal, and 2.21–3.30 Å for interaction from the carboxyl
terminal. A general observation is that, as the cluster size is
increased, the anchoring bond length also increases for both
the terminals. It is evident from Table 1 that the
corresponding N-H bond length is increased in case of
interaction from the amine terminal. A red shift in N-H
frequency is also observed for all the cases, but this shift
is not found to be directly proportional to the interaction
energy. This is because the N-H is also involved in an
intramolecular hydrogen bonding interaction with the car-
boxyl group. For larger clusters (Au11−13) this bonding gets
strengthened, accounting for greater values for the N-H
stretching. A similar behavior is also observed for the C 0

O bond during the interaction from the carboxyl terminal,
but the single bond C-O is found to develop a double bond
character and thereby a shortening of its length is seen in all
complexes. This has also been confirmed by the blue shift in
the IR frequency for C-O and a red shift in the other two
cases (Table 1). In general, a decrease in magnitudes of ∠C-
N-Cα and ∠Cα-N-H is observed, going toward a pyramidal
geometry with nitrogen at the vertex. Traditional hybridiza-
tion arguments suggest that increase of charge by nitrogen
will lead to sp3 hybridization and a more pyramidal geom-
etry. A special case is of interaction of carboxyl end of
proline with Au9. This is the only case where a simultaneous
interaction from amine and carboxyl terminal is taking
place. A red shift is observed for both N-C and C-O bonds.
No hydrogen bond is observed in this case but the geometry
around nitrogen is even more pyramidal, with ∠Cα-N-H
exactly 109.4°. This may be due to an increase of charge
by nitrogen leading to a sp3 hybridization.

Energetics

The ZPVE corrected interaction energies are shown in
Table 2.

One notable feature is that the Eint is higher for
interaction from the amine terminal. This has also been
reported in earlier works of Pakiari and Xie et al. [57,
59]. The only exception to this is for Au9 complex,
where there is a higher interaction from the carboxyl
end. Rather it is interacting from both ends simulta-
neously, resulting in a stronger interaction. Figure 2
represents the HOMO orbital of uncomplexed proline,
which is mostly localized on the amine nitrogen.

So, in accordance with the frontier molecular orbital
(FMO) theory, any external electrophile will have a greater
tendency to bind to proline via amine terminal. Also, nitro-
gen in proline is a secondary amine and hence more basic.
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Nitrogen is less electronegative than oxygen making it a
better nucleophile. So the electron donating capacity of
amine terminal is higher than that of the carboxyl terminal.
The higher nucleophilicity of amine terminal is also
depicted in Fig. 3, which shows the molecular electrostatic
potential mapped over an isodensity surface. We find a more
negative potential near the amine end and hence it is more
prone to an electrophilic attack by the gold cluster.

In general, we find higher interaction energy for odd
numbered clusters with the only exception of complex
with Au4. When we look at the binding energies of
uncomplexed clusters (Table 2), we find higher binding
energies for even numbered clusters. This stability is
explained on the basis of electron pairing effects [13,
15, 60]. With the same concept extended to complexes,
we can say that complexes with even number of elec-
trons are more stable. The maximum interaction energy
is found to be for complex with Au3. It is noticed that
it also has the shortest anchoring bond with both the
terminals (Fig. 1). The HOMO-LUMO gaps decrease on

complexation. Figure 4 shows the HOMO-LUMO gaps
for complexed and uncomplexed moieties. This might
be due to the occupancy of the HOMO and LUMO
orbitals by the cluster atoms. This effect may cause
these complexes to behave as better conductors than
uncomplexed proline.

As the size of the cluster increases, it is observed that
there is hardly any increase in the Eint beyond Au10. Com-
plexes with 11–13 gold atoms show an almost equivalent
amount of interaction and the corresponding anchoring bond
lengths are also nearly same. Thus, we may conclude that
beyond Au10 the electronic properties of these complexes do
not vary much with the size of cluster, i.e., a saturation is
reached.

Dipole moment and hyperpolarizability values

Table 2 also shows the dipole moment (μ) and first order
hyperpolarizability (β) values for the complexes. We find
higher μ for amine terminal interaction, indicating a higher

 

 

 

a b

Fig. 1 Optimized structures of complexes for interaction taking place
from the amine end and carboxyl end; (a) refers to interaction from
amine terminal and (b) refers to interaction from carboxyl terminal.

The numbers represent the distance between the anchoring bonds and
the natural charges over important active centers
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amount of charge transfer taking place from this end.
The only exception to this is again Au9 associated
complex. Here we find a higher μ value when simulta-
neous interaction from both terminals is taking place.
Earlier, we had seen that these complexes also have a
higher interaction energy. Thus, we can conclude that
charge transfer interactions are playing a major role in
stabilizing these complexes. Hyperpolarizability values
(β) show a rise (Fig. 5) which can be explained on
the basis of the breakdown of the centrosymmetric
character of the uncomplexed clusters. β is generally
higher for complexes formed from the carboxyl termi-
nal. The only exception to this is the complex with Au5
where the values are the same for both ends and for
Au9 where the value is lower for a simultaneous inter-
action is taking place from amine and carboxyl terminal.
An increase in the value of β is observed as the size of
the cluster is increased upto Au10, after which the
values lie more or less in the same range. Higher values
of β indicate that these complexes might possess good
non linear optical properties.

Natural population analysis

Natural charges of the active site have been shown in Fig. 1.
In some cases, especially the ones forming complex with
odd numbered clusters, we find that the charges over the
atoms of the anchoring bonds have opposite signs. This
depicts the ionic nature of the anchoring bond. A careful
observation indicates that the higher the ionic character, the
higher the interaction energy (Table 2). Table 3 represents
the charges over proline and gold cluster in both complexed
and uncomplexed forms. The quantity Δqcluster indicates a
gain of charge by the cluster, suggesting that the cluster
oxidizes the coordinated amino acid. Figure 3 indicates the
hybridization of the active site atoms. We see an increased
sp3 character of nitrogen. This is supported by the pyramid-
alization of the amine nitrogen on complexation. For the
interaction from the carboxyl end, there is a decrease in the
sp2 character of O in the carbonyl (C 0 O) bond, indicating a
decrease of charge from that center. However for C-OH
bond, there is an increased sp3 character of the hydroxyl
O, indicating an increase of charge. This observation in turn
supports the existence of a non-conventional hydrogen bond
between cluster and proline where cluster is acting as a
proton acceptor.

Natural bond orbital analysis

Natural bond orbital methods involve the expression of
molecular properties in terms of a ‘natural Lewis structure’
(NLS) depiction of wave function [61]. NBO allows any
aspect of wave function to be expressed in terms of Lewis

Table 1 Geometrical features of the optimized complexes

System Site of
interaction

Δ r (X-H) Δν (X-H) Anglea [in deg(°)]

Au3 Amine 0.01(N-H) 89.27(N-H) 109.99

0.01(N-C) 74.09(N-C)

Carboxyl −0.05(C-O) −326.14(C-O) 176.40

0.02(O-H) 538.28(O-H)

Au4 Amine 0.01(N-H) 92.15(N-H) 109.97

0.02(N-C) 75.26(N-C)

Carboxyl −0.05(C-O) −327.77(C-O) 171.35

0.02(O-H) 532.00(O-H)

Au5 Amine 0.01(N-H) 91.71(N-H) 110.04

0.01(N-C) 52.49(N-C)

Carboxyl −0.04(C-O) −319.48(C-O) 171.93

0.02(O-H) 254.00(O-H)

Au6 Amine 0.01(N-H) 91.24(N-H) 111.49

0.02(N-C) 56.82(N-C)

Carboxyl −0.03(C-O) −310.45(C-O) 152.00

0.02(O-H) 498.57(O-H)

Au7 Amine 0.01(N-H) 91.18(N-H) 110.05

0.02(N-C) 48.74(N-C)

Carboxyl −0.05(C-O) −319.20(C-O) 175.34

0.02(O-H) 498.57(O-H)

Au8 Amine 0.01(N-H) 98.94(N-H) 110.94

0.01(N-C) 54.80(N-C)

Carboxyl −0.03(C-O) −315.23(C-O) 127.80

0.01(O-H) 191.40(O-H)

Au9 Amine 0.01(N-H) 87.02(N-H) 110.79

0.01(N-C) 47.77(N-C)

Carboxylb −0.02(C 0 O) 63.97(C 0 O) 109.40

0.01(O-H) 47.21(O-H)

Au10 Amine 0.01(N-H) 92.71(N-H) 110.82

0.01(N-C) 35.35(N-C)

Carboxyl −0.05(C-O) −312.14(C-O) 104.32

0.01(O-H) 296.37(O-H)

Au11 Amine 0.01(N-H) 110.14(N-H) 110.98

0.01(N-C) 44.09(N-C)

Carboxyl −0.05(C-O) −320.74(C-O) 174.12

0.02(O-H) 474.96(O-H)

Au12 Amine 0.01(N-H) 119.31(N-H) 110.89

0.01(N-C) 31.76(N-C)

Carboxyl −0.05(C-O) −313.33(C-O) 164.42

0.02(O-H) 294.63(O-H)

Au13 Amine 0.01(N-H) 118.73(N-H) 110.93

0.01(N-C) 38.94(N-C)

Carboxyl −0.05(C-O) −320.31(C-O) 146.24

0.02(O-H) 343.23(O-H)

X-H corresponds to the bond of the active site with other atoms of the
amino acid.Δ r 0 rcomplex - rproline; Δ ν 0 νproline - νcomplex. The negative
value of Δ ν indicates a blue shift for the corresponding bond
a∠Cα-N-H in the case of amine and ∠O-H-Au in the case of carboxyl
terminal interaction
b∠Cα-N-H in carboxyl terminal interaction
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(one-center lone-pair or two-center bond-pair) and non-
Lewis type (all remaining orbitals) contributions, helping
us to apply the elementary valence bond concepts to the
modern wave functions. NBOs basically describe the resid-
ual resonance delocalization effects giving an insight to the
existing inter- and intramolecualr interactions in the system.

Second-order perturbation theory analysis is done to
evaluate the donor-acceptor interactions within the NBO
framework. This gives a quantitative view of the charge
transfer interactions existing between the donor and the
acceptor species. These interactions result in a reduction
of occupancy from the localized NBOs of the idealized

Lewis structure into the empty non-Lewis orbitals. Table 4
shows the stabilization energy (E(2)) values for the
complexes. In general, we see greater E(2) values for
complexes formed from the amine terminal which sup-
ports our previous results of higher interaction energy
from the amine terminal (Table 2). Maximum E(2) value
is noted for Au4 complex. We observe that for the
anchoring bonds, the lone pair of the donor (N,O) is
transferred to the antibonding orbitals of the metal, but
there is a backdonation of electron density from the
cluster to the proline. Especially, the lonepairs of gold
are found to donate the electrons to the antibonding
orbital of the anchoring bonds. The HOMO orbitals lie
on the metal and the LUMO orbitals for some cases are
occupied by the metal cluster (even numbered clusters
interacting from the carboxyl terminal), whereas, in
other cases are centered on the carboxyl group indicat-
ing a charge transfer (Fig. 6). This results in the reduc-
tion of the HOMO-LUMO gaps for the complex
(Fig. 4).

Atoms-in-molecules analysis

In AIM analysis, the nature of interaction is studied in terms
of properties of electron density and its derivatives [62, 63].

Table 2 Binding energies (Ebind), interaction energies (Eint), dipole moment (μ), hyperpolarizability (β), vertical electron affinity (EAvertical),
vertical ionization potential (IPvertical) of various complexes

System Ebind (kcal mol−1) Site of interaction Eint (kcal mol−1) μ (Debye) β × 10–30 e.s.u EAvertical (eV) IPvertical(eV)

Au3 −25.93 Amine −32.29 6.87 406.95 1.15 6.07

Carboxyl −22.06 3.28 606.03 1.72 6.70

Au4 −51.21 Amine −31.33 6.42 426.40 1.09 6.96

Carboxyl −20.55 3.12 647.37 1.51 7.34

Au5 −43.40 Amine −16.66 5.31 440.08 2.17 6.26

Carboxyl −12.64 4.28 440.08 2.49 6.97

Au6 −65.54 Amine −12.28 6.55 496.53 1.66 6.93

Carboxyl −6.00 2.50 765.41 1.87 7.59

Au7 −22.90 Amine −26.56 7.87 507.21 2.07 5.85

Carboxyl −16.76 3.70 810.43 2.43 6.25

Au8 −56.52 Amine −19.47 8.64 497.52 1.37 6.82

Carboxyl −8.89 2.95 765.38 1.69 7.30

Au9 −32.55 Amine −13.77 6.94 516.14 1.66 5.14

Carboxyl −15.88 12.38 336.54 1.79 5.56

Au10 −59.64 Amine −20.78 6.17 575.63 2.02 6.41

Carboxyl −7.54 3.21 894.84 2.67 6.89

Au11 −39.93 Amine −13.00 6.84 521.93 2.59 6.43

Carboxyl −10.48 3.89 833.658 2.80 5.49

Au12 −53.57 Amine −10.63 6.40 502.02 2.23 7.02

Carboxyl −3.55 4.41 928.54 2.59 6.12

Au13 −46.66 Amine −14.24 6.20 517.09 2.68 6.01

Carboxyl −8.77 3.97 957.87 3.08 5.63

Fig. 2 The HOMO of proline generated by the NBO calculations

4104 J Mol Model (2013) 19:4099–4109



Table 5 shows some of the important parameters of AIM
analysis. The term ∇2 ρ (r) is related to bond interaction
energy. A positive value represents a depletion of electronic
charge density along the bond, a case of ionic interaction. A
negative value indicates a charge density concentrated at the
center of the inter nuclear region, a case of covalent inter-
action. Table 5 indicates a positive ∇2 ρ (r) in all the cases,
existence of ionic interaction is thus supported.

The electronic energy density, H(r), at the bond critical
point (BCP) is given as:

H rð Þ ¼ G rð Þ þ V rð Þ; ð5Þ
where G(r) represents the kinetic energy density and V(r)
the potential energy density. The negative H(r) indicates a
stabilization effect due to accumulation of charge at r, as the
case of covalent interaction. Table 5 indicates negative
values for H(r) in most of the cases. The more negative H
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Table 3 Natural population analysis indicating charge accepted/do-
nated by the gold cluster

System Site of interaction qcluster qcluster-complex Δqcluster

Au3 Amine 0.001 −0.207 −0.206

Carboxyl 0.001 −0.075 −0.074

Au4 Amine 0.000 −0.232 −0.232

Carboxyl 0.000 −0.095 −0.095

Au5 Amine 0.000 −0.215 −0.215

Carboxyl 0.000 −0.090 −0.090

Au6 Amine 0.000 −0.183 −0.183

Carboxyl 0.000 −0.073 −0.073

Au7 Amine 0.000 −0.218 −0.218

Carboxyl 0.000 −0.084 −0.084

Au8 Amine 0.000 −0.184 −0.184

Carboxyl 0.000 −0.133 −0.133

Au9 Amine 0.000 −0.230 −0.230

Carboxyl 0.000 −0.200 −0.200

Au10 Amine 0.000 −0.231 −0.231

Carboxyl 0.000 −0.187 −0.187

Au11 Amine 0.000 −0.189 −0.189

Carboxyl 0.000 −0.031 −0.031

Au12 Amine 0.000 −0.174 −0.174

Carboxyl 0.000 −0.126 −0.126

Au13 Amine 0.000 −0.186 −0.186

Carboxyl 0.000 −0.119 −0.119

Δqcluster here represents the charge gained or lost by the cluster when it
forms complex with Pro

Fig. 3 Electrostatic potential mapped over isodensity surface for some
selected species. The isovalue for these images is 0.0004 a.u
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(r), the greater the covalent character of the bond. We find
that for complexes with higher interaction energy and
shorter anchoring bond lengths, the H(r) is more negative.
From this we can conclude that the anchoring bonds are
partially ionic and partially covalent in nature. We also find
that the value of H(r) for non-conventional hydrogen bond
between Au and H of the carboxyl group is either very low
or positive. Also, the H(r) is greater (in magnitude) for
interaction from the amine terminal except Au9 system,
again supporting our previous conclusion of greater interac-
tion from amine terminal.

Vertical ionization energies and electron affinity

Gold clusters have significantly larger electron affinities and
ionization potentials than amino acids. Table 2 represents
the vertical ionization potentials and electron affinities of all
the complexes. Earlier works suggest that the electron and
hole transfer phenomenon of molecules can be understood
by investigating their electron affinities and ionization
potentials [64, 65]. The electron affinity values lie in the
range of 1–3eV for all the complexes. These observations
are in line with an earlier reported result of Shukla et al.
where they have studied the cluster interaction with DNA
base pairs [66]. The ionization potential values hardly
change with increase in the size of the cluster.

Table 4 Second order perturbation theory analysis of Fock matrix in
NBO basis

System Site of
interaction

Donor NBO (i) Acceptor NBO (j) E(2) (kcal mol−1)

Au3 Amine nAμ1 σ*
N4�Au2 8.48

Carboxyl nAμ1 σ*
O19�H20 2.18

Au4 Amine nAμ1 σ*
N5�Au3 47.94

Carboxyl nAμ4 σ*
O20�H21 1.62

Au5 Amine nAμ4 σ*
Au4�N6 1.15

nAμ3 σ*
Au4�N6 4.22

Carboxyl no19 σ*
Au1�Au2 2.95

Au6 Amine nAμ4 σ*
N7�C9 23.86

Carboxyl nAμ4 σ*
C15�O20 5.38

Au7 Amine nAμ4 σ*
Au1�N8 3.91

nAμ4 σ*
C13�H18 2.07

nAμ4 σ*
N8�H22 3.48

Carboxyl nAμ1 σ*
C16�O21 5.46

nAμ2 σ*
O23�H24 3.70

Au8 Amine nAμ6 σ*
N9�C11 15.04

Carboxyl nAμ5 σ*
O24�H25 1.15

Au9 Amine nAμ7 σ*
Au2�N10 18.98

Carboxyl nAμ1 σ*
C11�H13 1.79

Au10 Amine nAμ9 σ*
Au3�N11 19.20

Carboxyl nAμ5 σ*
O25�H26 1.46

Fig. 6 HOMO and LUMO orbitals of some selected complexes
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An interesting observation comes out from the natural
charge analysis of these anionic and cationic species.
The extra charge resides over the gold cluster. Even
when the electron is removed from the system, the
charge over the cluster region is reduced. Hence, the
cluster may act as a protective agent for the amino acid
when it is subjected to a high energy/ionizing radiation.
Also the HOMO for both cases lies on the metal cluster
indicating that any electron exchange will be from the
cluster part, not affecting the amino acid at all (Fig. S6
of supporting information).

Conclusions

Gold nanoclusters form stable complexes with proline. It is
found that the interaction from the amine terminal is favored
over the interaction from the carboxyl end which is also
supported by the NBO and AIM data. The major bonding
factors found to govern this interaction are the anchoring
bonds between Au-N(O) and the non conventional

hydrogen bonding between O-H⋯Au. The highest interac-
tion energy is found for complex with Au3. No specific
trend for interaction energy is observed on increasing the
size of the cluster. Reduced HOMO-LUMO gaps suggest
that these complexes might behave as good conductors.
Increased hyperpolarizability values indicate good non lin-
ear optical properties for these complexes. The AIM analy-
sis indicates a partial ionic character for the anchoring
bonds. NPA indicates that the cluster tends to oxidize the
proline molecule. Second order perturbation analysis indi-
cates the effective charge transfer existing in these com-
plexes also supported by higher values of dipole moments.
The computed values of vertical ionization potential and
electron affinity indicate that gold clusters can also act as
protective agents for the amino acid molecule in conditions
of high/low charge densities.

Acknowledgments We thank the Department of Science and Tech-
nology, New Delhi, Government of India, for financial support. One of
the authors (Sandhya Rai) acknowledges (Council of Scientific and
Industrial Research Junior Research Fellowship) fellowship Via 20-12/
2009(ii)EU-IV.

Table 5 Bond critical point data (in atomic units) from AIM analysis

System Site of interaction BCP ρ ∇2ρ G(r) V(r) H(r)

Au3 Amine Au2 N4 9.20×10−2 3.39×10−1 1.08×10−1 −1.32×10−1 −0.24×10−1

Carboxyl Au2 O17 7.20×10−2 3.52×10−1 9.61×10−2 −1.04×10−1 −0.08×10−1

Au1 H20 2.07×10−2 4.52×10−2 1.16×10−2 −1.19×10−2 −0.03×10−2

Au4 Amine Au3 N5 9.14×10−2 3.35×10−1 1.07×10−1 −1.31×10−1 −0.24×10−1

Carboxyl Au3 O18 7.08×10−2 3.46×10−1 9.40×10−2 −1.02×10−1 −0.08×10−1

Au4 H21 2.08×10−2 4.46×10−2 1.15×10−2 −1.18×10−2 −0.03×10−2

Au5 Amine Au1 H10 1.19×10−2 3.20×10−2 7.36×10−3 −6.76×10−3 0.6×10−3

Au4 N6 7.97×10−2 2.82×10−2 8.80×10−2 −1.05×10−1 −0.17×10−1

Carboxyl Au1 O19 5.79×10−2 2.72×10−1 7.19×10−2 −7.60×10−2 −0.41×10−2

Au1 H21 1.61×10−2 4.40×10−2 1.03×10−2 −9.70×10−3 0.06×10−2

Au6 Amine Au4 N7 6.68×10−2 2.41×10−1 7.21×10−2 −8.38×10−2 −1.17×10−2

Au5 H17 7.57×10−3 1.89×10−2 4.31×10−3 −3.90×10−3 0.41×10−3

Carboxyl Au4 O20 3.42×10−2 1.45×10−1 3.36×10−2 −3.49×10−2 −0.13×10−2

Au5 H22 1.73×10−2 4.40×10−2 1.05×10−2 −1.00×10−2 0.05×10−2

Au7 Amine Au1 N8 8.57×10−2 3.14×10−1 9.90×10−2 −1.19×10−1 −0.20×10−1

Carboxyl Au1 O21 6.35×10−2 3.06×10−1 8.19×10−2 −8.73×10−2 −0.54×10−2

Au2 H24 2.00×10−2 4.21×10−2 1.09×10−2 −1.13×10−2 −0.04×10−2

Au8 Amine Au6 N9 7.84×10−2 2.87×10−2 8.87×10−2 −1.06×10−1 −0.17×10−1

Carboxyl Au8 O22 4.55×10−2 2.05×10−1 5.24×10−2 −5.34×10−2 −0.10×10−2

Au8 H25 1.39×10−2 3.80×10−2 8.77×10−3 −8.04×10−3 0.73×10−3

Au9 Amine Au2 N10 7.97×10−2 2.92×10−1 9.05×10−2 −1.08×10−1 −0.18×10−1

Carboxyl Au5-N10 7.12×10−2 2.65×10−1 7.99×10−2 −9.36×10−2 −1.37×10−2

Au5 O23 2.60×10−2 1.03×10−1 2.47×10−1 −2.36×10−1 0.11×10−1

Au10 Amine Au3 N11 8.06×10−2 2.94×10−1 9.16×10−2 −1.10×10−1 −0.18×10−1

Carboxyl Au1 O25 8.39×10−2 3.95×10−1 1.11×10−1 −1.24×10−1 −0.13×10−1

Au4 O24 8.26×10−2 3.90×10−1 1.10×10−1 −1.22×10−1 −0.12×10−1
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